molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters
نویسندگان
چکیده
We summarize the molgw code that implements density-functional theory and many-body perturbation theory in a Gaussian basis set. The code is dedicated to the calculation of the many-body self-energy within the GW approximation and the solution of the Bethe-Salpeter equation. These two types of calculations allow the user to evaluate physical quantities that can be compared to spectroscopic experiments. Quasiparticle energies, obtained through the calculation of the GW self-energy, can be compared to photoemission or transport experiments, and neutral excitation energies and oscillator strengths, obtained via solution of the Bethe-Salpeter equation, are measurable by optical absorption. The implementation choices outlined here have aimed at the accuracy and robustness of calculated quantities with respect to measurements. Furthermore, the algorithms implemented in molgw allow users to consider molecules or clusters containing up to 100 atoms with rather accurate basis sets, and to choose whether or not to apply the resolution-of-the-identity approximation. Finally, we demonstrate the parallelization efficacy of the molgw code over several hundreds of processors.
منابع مشابه
Simulation of Fabrication toward High Quality Thin Films for Robotic Applications by Ionized Cluster Beam Deposition
The most commonly used method for the production of thin films is based on deposition of atoms or molecules onto a solid surface. One of the suitable method is to produce high quality metallic, semiconductor and organic thin film is Ionized cluster beam deposition (ICBD), which are used in electronic, robotic, optical, optoelectronic devices. Many important factors such as cluster size, cluster...
متن کاملA Hard Convex Core Yukawa Equation of State for Nonassociated Chain Molecules
The compressibility factor of nonassociated chain molecules composed of hard convex core Yukawa segments was derived with SAFT-VR and an extension of the Barker-Henderson perturbation theory for convex bodies. The temperature-dependent chain and dispersion compressibility factors were derived using the Yukawa potential. The effects of temperature, packing fraction, and segment number on the com...
متن کاملEvolution of electronic and ionic structure of Mg-clusters with the growth cluster size
The optimized structure and electronic properties of neutral and singly charged magnesium clusters have been investigated using ab initio theoretical methods based on density-functional theory and systematic post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. We have systematically calculated the optimized geometries of neutral and singly charged magnesiu...
متن کاملQTAIM study of Bonding and Structure of Pure Atomic Clusters,Part III : Nn Clusters (n= 4,6)
DFT and QTAIM computations have been performed on numbers of pure nitrogen cluster speciesi.e. Nn (n = 4, 6) for investigating the structure and bonding. This study is critical since thesemolecules have been nominated as the good synthetic targets of High Energy Materials (HEM).0nthe other hand the decomposition mechanism is closely depends on the bonding pattern. Thislatter concept was searche...
متن کاملTwo and Three-Body Interactions between CO, H2O, and HClO4
Intermolecular interactions of different configurations in the HOClO3···CO and HOClO3···H2O dyad and CO···HOClO3···H2O triad systems have been studied at MP2/6-311++G(2d,2p) computational level. Molecular geometries, binding energies, cooperative energies, many-body interaction energies, and Energy Decomposition Analysis (EDA) were eval...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 208 شماره
صفحات -
تاریخ انتشار 2016